tf_keras_regression

回归模型

# 回归模型
import os
import sys
import time
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
from tensorflow import keras
# 获取房价数据集
from sklearn.datasets.california_housing import fetch_california_housing
housing = fetch_california_housing()

print(housing.DESCR)
print(housing.data.shape)    # X
print(housing.target.shape)  # Y
.. _california_housing_dataset:

California Housing dataset
--------------------------

**Data Set Characteristics:**

    :Number of Instances: 20640

    :Number of Attributes: 8 numeric, predictive attributes and the target

    :Attribute Information:
        - MedInc        median income in block
        - HouseAge      median house age in block
        - AveRooms      average number of rooms
        - AveBedrms     average number of bedrooms
        - Population    block population
        - AveOccup      average house occupancy
        - Latitude      house block latitude
        - Longitude     house block longitude

    :Missing Attribute Values: None

This dataset was obtained from the StatLib repository.
http://lib.stat.cmu.edu/datasets/

The target variable is the median house value for California districts.

This dataset was derived from the 1990 U.S. census, using one row per census
block group. A block group is the smallest geographical unit for which the U.S.
Census Bureau publishes sample data (a block group typically has a population
of 600 to 3,000 people).

It can be downloaded/loaded using the
:func:`sklearn.datasets.fetch_california_housing` function.

.. topic:: References

    - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
      Statistics and Probability Letters, 33 (1997) 291-297

(20640, 8)
(20640,)

Last updated

Was this helpful?